

Workshop Agenda

- 1. Start AVS/Express and open STM3 library
- 2. Basic functions (single and multiple static structures)
- 3. Dynamic structures
- 4. Volumetric data
- 5. Crystallography support
- 6. Output production (movies and images)
- 7. Other modules
- 8. Extensibility

Start STM3 (and 2" tutorial)

- Launch AVS/Express (with STM3 included):
 - \$ source /usr/local/userenv/express.csh
 - \$ express (Linux)
 - C:\> cd CSCSlib
 - C:\CSCSlib> go.bat (Windows)
- Special cases: ./go-viz ./go -nohw
- Go To Libraries → STM3
- Then go to the rightmost column (Full Apps)
- Drag the MolDisplayApp block in the area below marked Applications
- In the window that pops up select the file format (e.g. PDB) and read a file.
- Mouse rotate. Middle Mouse Button+Shift: Zoom. +Ctrl: Pan. Reset with the □ button.
- With the Modules drop down menu select Display Molecule and change the molecule appearance.

AVS/Express applications

- Each module starts when receives all the needed data
- An application can use STM3 and standard AVS/Express modules together
- Connection ports (popup gives info and help)
- Colors related to data type
- The user interface automatically docks in the right place

- 1. Readers for various, static and dynamic, chemical file formats
- 2. Modules that computes various derived structures
- 3. Manipulation of molecules, like atom selection
- 4. Unit cells, periodic lattices and symmetries support
- 5. Volumetric data visualization and manipulation
- 6. Final rendering of molecular data and legends
- 7. Probe, interaction and measurements
- 8. Output to image files, movies and other formats
- 9. Ready to run applications (plus display of STM3 version)

STM3 resources

• STM3 overview and image gallery page

http://www.cscs.ch/projects/AVSChemistry.php

■ The list of current STM3 modules

http://www.cscs.ch/~mvalle/ChemViz/doc/STM3/

■ The STM3 paper

M. Valle, **STM3:** a chemistry visualization platform, *Zeitschrift für Kristallographie*, vol. 220, no. 5-6, pp. 585-588, 2005

The Blog and Wiki resources

http://chemviz.blogspot.com/ https://twiki.cscs.ch/bin/view/TWiki/ChemViz

A (marketing) brochure on AVS/Express

http://www.avs.com/software/soft_t/avsxps.html

A user level AVS/Express course

http://www.cscs.ch/~mvalle/AVS/XP-intro-en.html

A practical introduction to STM3 - Mario Valle

Before starting: what STM3 is not

- A complete chemistry visualization tool
 - It grows depending on user requests. If something is not requested, it is not be added.
 - Remember, STM3 goal is not to replace existing tools
- A simple, end user tool
 - It is more a LEGO construction box
 - More power and flexibility comes at the expense of no point-and-click interface
- A tool for a specific chemistry field (biochemistry, MD, crystallography, etc.)
 - Again functionalities depend on the requests
 - But it is precisely its goal to be cross-field

Before starting: STM3 evolution

- I'm working on the STM3 evolution, tentatively called (guess what?) STM4
- Something already exist. I will show examples during the tutorial
- But is still too early to switch over (for example there is no updated documentation)
- Anyway the same concepts and almost the same modules will be available
- And more: with a pair of conversion modules, current and future modules could be mixed

Look at a static structure

Goal

Look at a static structure experimenting with various rendering modes

How

- 1. Instantiate MolDisplayApp
- 2. Look at its structure (double click on the application)
- 3. Load G-host.pdb
- 4. Play with reader options
- 5. Play with rendering options

Bonus

- 1. Add a second molecule
- 2. Try the STM4 MolDisplayApp

Crystallography support

Goal

 Look at a static structure experimenting with various crystallographic support modules

How

- 1. Instantiate CrystalDisplayApp
- 2. Look at its structure
- 3. Load diamond.res using SHELX format
- 4. Disable symmetries
- 5. Play with cell replication options

Bonus

- 1. Add tetrahedra
- 2. Build the same network in STM4 starting from MolDisplayApp
- 3. What are the differences between STM3 and STM4 versions?

Volumetric data

Goal

 Look at a static structure and its associated volumetric data experimenting with various volume visualization techniques

How

- 1. Instantiate CHGCARDisplayApp
- 2. Look at its structure
- 3. Load CHG-magnetic (setting before the "magnetic" toggle)
- 4. Add a Display Unit Cell module
- 5. Play with Isosurface parameters

Bonus

- 1. Add Orthoslice
- 2. Save a screenshot of the resulting visualization
- 3. Use volume render (under Main → Mappers) + Float 2 Byte

Dynamic structures

Goal

 Look at a dynamic structure experimenting with movie creation and animation techniques

How

- 1. Instantiate AnimDisplayApp
- 2. Look at its structure
- 3. Load alanine.pdb and alanine.dcd (as DCD)
- 4. Animate it
- 5. Save a movie of the animation

Bonus

- 1. Add N-Cα-C tube (backbone) and change its color
- 2. Compute the Solvent Excluded Surface (does not works on Mac)

Context element for output

Goal

 Add context elements to the graphical scene to enhance output production

How

- 1. Instantiate MolDisplayApp
- 2. Load G-host.pdb
- 3. Add Logo
- 4. Add Color legend
- 5. Output image

Bonus

- 1. Add BackgroundFade (under Main → Geometries)
- 2. Add TextTitle (idem)

What is missing

- Charges (file ice-melting.pdb)
 - Color by charge
 - Threshold
- Surfaces (file alanin.pdb)
 - Cut
 - Bicolor surface
 - Surface values mapping
- Selection (file 1A00.pdb)
 - Select atoms and residues
 - Crop atoms
- Interaction (file G-host.pdb)
 - Pick atoms
- Special techniques
 - Traces (file T600unit.xyz)
 - Particle density (file ice-melting.pdb)
 - Velocity density
 - Scat to volume (file Condensation.pdb)
 - X-Ray factors (file 1485.res)

A practical introduction to STM3 - Mario Valle

To summarize

- With STM3 you can concentrate on the chemistry, not on the visualization tool
- STM3 needs your creative ideas to grow
- Try it with your data